## **ORIGINAL ARTICLE**



# Synthesis and Aldose Reductase Inhibitory Effect of Some New Hydrazinecarbothioamides and 4-Thiazolidinones Bearing an Imidazo[2,1-b] Thiazole Moiety

İmidazo[2,1-b]Tiyazol Çekirdeği Taşıyan Bazı Yeni Hidrazinkarbotiyoamitler ve 4-Tiyazolidinonların Sentezi ve Aldoz Redüktaz İnhibitör Etkileri

<sup>1</sup>İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Turkey <sup>2</sup>Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey

#### ABSTRACT |

**Objectives:** To synthesize and characterize 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-alkyl/arylhydrazinecarbothioamide and 3-alkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-nonsubstituted/methyl-4-thiazolidinone derivatives and evaluate them for their aldose reductase (AR) inhibitory effect.

Materials and Methods: 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-alkyl/arylhydrazinecarbothioamides (3a-f) and 3-alkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-nonsubstituted/methyl-4-thiazolidinones (4a-j) were synthesized from 2-[6-(4-bromophenyl)imidazo[2,1-b]thiazole-3-yl]acetohydrazide (2). Their structures were elucidated by elemental analyses and spectroscopic data. The synthesized compounds were tested for their ability to inhibit rat kidney AR.

**Results:** Among the synthesized compounds, 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-benzoylhydrazinecarbothioamide (3d) showed the best AR inhibitory activity.

Conclusion: The findings of this study indicate that the different derivatives of the compounds in this study may be considered interesting candidates for future research.

Key words: Hydrazinecarbothioamide, 4-thiazolidinone, imidazo[2,1-b]thiazole, aldose reductase inhibition

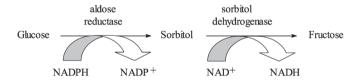
## ÖZ

Amaç: Bu çalışmanın amacı, 2-[[6-(4-bromofenil)imidazo[2,1-b]tiyazol-3-il]asetil]-N-alkil/arilhidrazinkarbotiyoamit ve 3-alkil/aril-2-[((6-(4-bromofenil)imidazo[2,1-b]tiyazol-3-il)asetil)hidrazono]-5-nonsübstitüe/metil-4-tiyazolidinon türevlerini sentezlemek, yapılarını aydınlatmak ve aldoz redüktaz (AR) inhibitör etkilerini araştırmaktır.

Gereç ve Yöntemler: 2-[6-(4-bromofenil)imidazo[2,1-b]tiyazol-3-il]asetohidrazitten (2) hareketle 2-[[6-(4-bromofenil)imidazo[2,1-b]tiyazol-3-il] asetil]-N-alkil/arilhidrazinkarbotiyoamit (3a-f) ve 3-alkil/aril-2-[((6-(4-bromofenil)imidazo[2,1-b]tiyazol-3-il)asetil)hidrazono]-5-nonsübstitüe/metil-4-tiyazolidinon türevleri (4a-j) sentezlenmiştir. Bileşiklerin yapıları elementel analiz ve spektroskopik bulgularla kanıtlanmıştır. Sentezlenen bileşikler sıçan böbrek AR enzimini inhibe etme özellikleri açısından test edilmiştir.

**Bulgular:** Sentezlenen bileşikler arasından, 2-[[6-(4-bromofenil)imidazo[2,1-*b*]tiyazol-3-il]asetil]-*N*-benzoilhidrazinkarbotiyoamit (**3d**) en iyi AR inhibitör etkiyi göstermiştir.

Sonuç: Bu çalışmanın bulguları, bu çalışmadaki bileşiklerin farklı türevlerinin gelecek araştırmalar için ilginç adaylar olarak görülebileceğini göstermektedir.


Anahtar kelimeler: Hidrazinkarbotiyoamit, 4-tiyazolidinon, imidazo[2,1-b]tiyazol, aldoz redüktaz inhibisyon

<sup>\*</sup>Correspondence: E-mail: nulusoy@istanbul.edu.tr, Phone: +90 532 574 92 63 ORCID-ID: orcid.org/0000-0002-4495-4282 Received: 06.08.2017, Accepted: 30.11.2017

## INTRODUCTION

Diabetes mellitus (DM) is a chronic disease caused by deficient production of insulin by the pancreas and by resistance to insulin's effects, or in some cases both. According to the World Health Organization, more than 422 million people worldwide have diabetes and the number is expected to rise to almost double by 2030.¹ Furthermore, hyperglycemia is the major risk factor responsible for the broad range of complications that are the main cause of mortality and morbidity in people with DM. There are two forms of complications: acute and chronic, including nephropathy, neuropathy and retinopathy.² Various biochemical pathways have been proposed to explain the pathological mechanisms of diabetic complications. These include increased polyol pathway flux, activation of the protein kinase C pathway, oxidative stress, and accelerated advanced glycation end-product formation.²,3

Aldose reductase (AR) (AR; ALR2; EC 1.1.1.21) is the first enzyme in the polyol pathway and reduces glucose to sorbitol in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). Sorbitol dehydrogenase, the second enzyme in the polyol pathway, oxidizes the intermediate sorbitol to fructose with NAD+ as cofactor (Figure 1).4,5 It has been reported that AR enzyme activity increases in diabetes.<sup>6</sup> Total glucose utilization by AR-catalyzed reduction is less than 3% under normoglycemia (5.5 mM), whereas the rate is more than 30% under hyperglycemia (20 mM).6 Increased AR activity has been implicated in the pathogenesis of diabetic complications.<sup>6,7</sup> Activated AR leads to cell damage through several mechanisms, including accumulation of sorbitol, 8,9 NADPH depletion, 10,11 increased NADH/NAD+ ratio, 12 and increased fructose levels. 13 Inhibitors of AR thus seem to have the potential to prevent or treat diabetic complications. Even though a wide number of AR inhibitors (ARIs) have been obtained over the last 30 years, the clinical efficacy of these compounds is not completely satisfactory and several of them have shown undesirable side effects.<sup>14</sup> Sorbinil, tolrestat, zopolrestat and ponalrestat were withdrawn from clinical trials because of their side effects.15 Various thiazolidinedione derivatives are a newer class of antidiabetic drugs16-20 that improve glycemic control in type 2 diabetes by increasing insulin action in skeletal muscles, the liver, and adipose tissue. 21,22



**Figure 1.** Polyol pathway NADPH: Nicotinamide adenine dinucleotide phosphate

There has been considerable interest in the chemistry of 4-thiazolidinone ring systems, which are a core structure in various synthetic pharmaceuticals displaying a broad spectrum of biological activities such as antidiabetic,<sup>7,23-26</sup> anticancer,<sup>27-29</sup>

antiviral/anti-HIV,<sup>30</sup> antibacterial and antifungal,<sup>31,32</sup> antitubercular,<sup>33</sup> antiinflammatory, and analgesic<sup>34</sup> activities. Moreover, imidazo[2,1-b]thiazole<sup>35</sup> and thiosemicarbazide<sup>36</sup> moieties are also associated with various biological properties including antidiabetic activity.

As a continuation of our previous studies on 4-thiazolidinone derivatives with ARIs<sup>37-43</sup> or different biological activities,<sup>44-48</sup> we report the synthesis of some novel imidazo[2,1-*b*]thiazole derivatives incorporating two known bioactive nuclei such as hydrazinecarbothioamide or 4-thiazolidinone.

## **EXPERIMENTAL**

### Chemical methods

Melting points were determined using a Büchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were performed on a Thermo Finnigan Flash EA 1112 elemental analyzer. IR spectra were recorded on KBr discs, using a Shimadzu IR Affinity-1 FT-IR spectrophotometer. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR (APT) spectra were measured on a Varian UNITY INOVA (500 MHz) spectrometer using dimethyl sulfoxide (DMSO)-d<sub>6</sub>. The starting materials were either commercially available or synthesized according to the references cited.

General procedure for the synthesis of 2-[[6-(4-bromophenyl) imidazo[2,1-b]thiazol-3-yl]acetyl]-N-cycloalkyl/aralkyl/arylhydrazinecarbothioamides (**3a-f**)

To a solution of 2-[6-(4-bromophenyl)imidazo[2,1-b]thiazole-3-yl]acetohydrazide (2) (0.005 mol) in ethanol (30 mL) was added the appropriate isothiocyanate (0.005 mol). The resulting mixture was heated under reflux for 3 h. After cooling, the precipitate was separated and purified by washing with hot ethanol.

2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-cycl ohexylhydrazinecarbothioamide (**3a**)

Yield: 71%; m.p. 246°C; IR (KBr, cm<sup>-1</sup>): 3207 (N-H), 1672 (C=O), 1195 (C=S); <sup>1</sup>H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 10.09 (s, 1H, NH), 9.44; 9.18 (2s, 1H, NH), 8.27; 8.15 (2s, 1H, imidazothiazole  $C_5$ -H), 7.77-7.73 (m, 2H, 4-Brphenyl  $C_{2.6}$ -H), 7.66 (s, 1H, NH), 7.60-7.56 (m, 2H, 4-Brphenyl  $C_{3.5}$ -H), 7.10; 7.06 (2s, 1H, imidazothiazole  $C_2$ -H), 4.06 (s, 1H, cyclohexyl), 3.82 (s, 2H, CH<sub>2</sub>CO), 1.77-1.03 (m, 10H, cyclohexyl). Anal. Calcd. for  $C_{20}$ H<sub>22</sub>BrN<sub>5</sub>OS<sub>2</sub>: C, 48.78; H, 4.50; N, 14.22. Found: C, 48.25; H, 3.90; N, 13.97.

2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-Nbenzylhydrazinecarbothioamide (**3b**)

Yield: 88%; m.p. 251-252°C; IR (KBr, cm<sup>-1</sup>): 3217 (N-H), 1674 (C=O), 1195 (C=S); <sup>1</sup>H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 10.24 (s, 1H, NH), 9.63; 9.45 (2s, 1H, NH), 8.68 (s, 1H, NH), 8.21 (s, 1H, imidazothiazole C<sub>5</sub>-H), 7.72 (d, 2H, J=8.78 Hz, 4-Brphenyl C<sub>2,6</sub>-H), 7.57 (d, 2H, J=8.78 Hz, 4-Brphenyl C<sub>3,5</sub>-H), 7.30-7.20 (m, 5H, phenyl), 7.10 (s, 1H, imidazothiazole C<sub>2</sub>-H), 4.78 (s, 2H, CH<sub>2</sub>), 3.83 (s, 2H, CH<sub>2</sub>CO). Anal. Calcd. for C<sub>21</sub>H<sub>18</sub>BrN<sub>5</sub>OS<sub>2</sub>: C, 50.40; H, 3.63; N, 13.99. Found: C, 50.20; H, 3.65; N, 13.46.

# 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-phenethylhydrazinecarbothioamide (**3c**)

Yield: 89%; m.p. 251°C; IR (KBr, cm¹): 3197 (N-H), 1672 (C=O), 1163 (C=S); ¹H-NMR (500 MHz, DMSO-d₀): δ 10.19 (s, 1H, NH), 9.55; 9.35 (2s, 1H, NH), 8.26 (s, 1H, NH), 8.21 (s, 1H, imidazothiazole C₅H), 7.77 (d, 2H, J=9.27 Hz, 4-Brphenyl C₂₀-H), 7.58 (d, 2H, J=8.78 Hz, 4-Brphenyl C₃₅-H), 7.31-7.28 (m, 2H, phenyl), 7.25-7.20 (m, 3H, phenyl), 7.11; 7.06 (2s, 1H, imidazothiazole C₂-H), 3.83 (s, 2H, CH₂CO), 3.66 (q, 2H, J=7.81 Hz, N-CH₂), 2.82 (t, 2H, J=7.07 Hz, CH₂-Ph). Anal. Calcd. for C₂₂H₂₀BrN₅OS₂: C, 51.36; H, 3.92; N, 13.61. Found: C, 51.33; H, 3.82; N, 13.60.

# 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-benzoylhydrazinecarbothioamide (**3d**)

Yield: 73%; m.p. 215°C; IR (KBr, cm $^{-1}$ ): 3178 (N-H), 1666; 1645 (C=O), 1172 (C=S);  $^{1}$ H-NMR (500 MHz, DMSO-d $_{6}$ ): δ 12.55 (s, 1H, NH), 11.77 (s, 1H, NH), 11.32 (s, 1H, NH), 8.35 (s, 1H, imidazothiazole C $_{5}$ -H), 7.95 (d, 2H, J=8.78 Hz, phenyl), 7.78 (d, 2H, J=8.29 Hz, 4-Brphenyl C $_{2,6}$ -H), 7.66-7.63 (m, 1H, phenyl), 7.60-7.57 (m, 2H, 4-Brphenyl C $_{3,5}$ -H), 7.54-7.50 (m, 2H, phenyl), 7.15 (s, 1H, imidazothiazole C $_{2}$ -H), 3.99 (s, 2H, CH $_{2}$ CO). Anal. Calcd. for C $_{21}$ H $_{16}$ BrN $_{5}$ O $_{2}$ S $_{2}$ : C, 49.03; H, 3.14; N, 13.61. Found: C, 48.97; H, 3.66; N, 12.89.

# 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-(4-fluorophenyl)hydrazinecarbothioamide (**3e**)

Yield: 90%; m.p. 209-210°C; IR (KBr, cm<sup>-1</sup>): 3134 (N-H), 1674 (C=O), 1213 (C=S); <sup>1</sup>H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 10.40 (s, 1H, NH), 9.81 (s, 1H, NH), 9.73 (s, 1H, NH), 8.24 (s, 1H, imidazothiazole C<sub>5</sub>-H), 7.72 (d, 2H, J=8.29 Hz, 4-Brphenyl C<sub>2.6</sub>-H), 7.58 (d, 2H, J=8.79 Hz, 4-Brphenyl C<sub>3.5</sub>-H), 7.44-7.41 (m, 2H, phenyl), 7.20-7.17 (m, 2H, phenyl), 7.12 (s, 1H, imidazothiazole C<sub>2</sub>-H), 3.88 (s, 2H, CH<sub>2</sub>CO). Anal. Calcd. for C<sub>20</sub>H<sub>15</sub>BrFN<sub>5</sub>OS<sub>2</sub>: C, 47.63; H, 3.00; N, 13.88. Found: C, 47.66; H, 3.19; N, 13.29.

# 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-(4-methoxyphenyl)hydrazinecarbothioamide (**3f**)

Yield: 86%; m.p. 230°C; IR (KBr, cm<sup>-1</sup>): 3296; 3134 (N-H), 1672 (C=O), 1236 (C=S); <sup>1</sup>H-NMR (500 MHz, DMSO-d<sub>o</sub>):  $\delta$  10.36 (s, 1H, NH), 9.70 (s, 1H, NH), 9.59 (s, 1H, NH), 8.25 (s, 1H, imidazothiazole C<sub>5</sub>-H), 7.71 (d, 2H, J=8.78 Hz, 4-Brphenyl C<sub>2,6</sub>-H), 7.57 (d, 2H, J=8.78 Hz, 4-Brphenyl C<sub>3,5</sub>-H), 7.28 (d, 2H, J=8.79 Hz, phenyl), 7.12 (s, 1H, imidazothiazole C<sub>2</sub>-H), 6.91 (d, 2H, J=8.79 Hz, phenyl), 3.87 (s, 2H, CH<sub>2</sub>CO), 3.76 (s, 3H, OCH<sub>3</sub>). <sup>13</sup>C-NMR (APT) (500 MHz, DMSO-d<sub>o</sub>):  $\delta$  181.50 (C=S), 162.20 (C=O), 157.59 (phenyl C<sub>4</sub>), 149.53 (imidazothiazole C<sub>7a</sub>), 145.47 (imidazothiazole C<sub>6</sub>), 134.23 (4-Brphenyl C<sub>1</sub>), 132.51 (phenyl C<sub>1</sub>), 132.27 (4-Brphenyl C<sub>3,5</sub>), 127.33 (phenyl C<sub>2,6</sub>), 127.25 (4-Brphenyl C<sub>2,6</sub>), 126.85 (imidazothiazole C<sub>3</sub>), 120.50 (4-Brphenyl C<sub>4</sub>), 114.10 (phenyl C<sub>3,5</sub>), 111.46 (imidazothiazole C<sub>2</sub>), 109.75 (imidazothiazole C<sub>5</sub>), 55.92 (CH<sub>3</sub>), 33.41 (CH<sub>2</sub>). Anal. Calcd. for C<sub>21</sub>H<sub>18</sub>BrN<sub>5</sub>O<sub>2</sub>S<sub>2</sub>: C, 48.84; H, 3.51; N, 13.56. Found: C, 49.05; H, 3.54; N, 13.71.

General procedure for the synthesis of 3-cycloalkyl/aralkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-nonsubstituted/methyl-4-thiazolidinones (**4a-j**)

To a suspension of 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-alkyl/arylhydrazinecarbothioamides (0.005 mol) in

absolute ethanol (30 mL) were added anhydrous sodium acetate (0.02 mol) and ethyl bromoacetate/ethyl 2-bromopropionate (0.005 mol). The reaction mixture was refluxed for 20 h, then cooled, diluted with water, and allowed to stand overnight. The crystals were filtered, dried, and purified by crystallization from ethanol or ethanol/water.

# 3-Benzyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl) acetyl)hydrazono]-4-thiazolidinone (**4a**)

Yield: 96%; m.p. 232-233°C; IR (KBr, cm<sup>-1</sup>): 3215 (N-H), 1720 (ring C=O), 1670 (C=O); ¹H-NMR (500 MHz, DMSO-d<sub>6</sub>):  $\delta$  (NH proton not observed), 8.32; 8.10 (2s, 1H, imidazothiazole C<sub>5</sub>-H), 7.76 (d, 2H, J=8.30 Hz, 4-Brphenyl C<sub>2,6</sub>-H), 7.58 (d, 2H, J=7.32 Hz, 4-Brphenyl C<sub>3,5</sub>-H), 7.38-7.19 (m, 5H, phenyl), 7.03; 6.84 (2s, 1H, imidazothiazole C<sub>2</sub>-H), 4.82 (s, 2H, NCH<sub>2</sub>), 4.15-3.83 (m, 4H, CH<sub>2</sub>CO and SCH<sub>2</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>18</sub>BrN<sub>5</sub>O<sub>2</sub>S<sub>2</sub>: C, 51.11; H, 3.36; N, 12.96. Found: C, 50.74; H, 3.38; N, 13.10.

# 3-Phenethyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-4-thiazolidinone (**4b**)

Yield: 88%; m.p.  $134-135^{\circ}$ C; IR (KBr, cm<sup>-1</sup>): 3142 (N-H), 1716 (ring C=O), 1658 (C=O);  $^{1}$ H-NMR (500 MHz, DMSO-d $_{6}$ ):  $\delta$  10.72; 10.55 (2s, 1H, NH), 8.28; 8.20 (2s, 1H, imidazothiazole C $_{5}$ -H), 7.78 (d, 2H, J=8.78 Hz, 4-Brphenyl C $_{2,6}$ -H), 7.59 (d, 2H, J=8.30 Hz, 4-Brphenyl C $_{3,5}$ -H), 7.28-7.23 (m, 2H, phenyl), 7.21-7.16 (m, 3H, phenyl), 7.08; 7.05 (2s, 1H, imidazothiazole C $_{2}$ -H), 4.08-3.82 (m, 6H, CH $_{2}$ CO, SCH $_{2}$  and NCH $_{2}$ ), 2.89 (t, 2H, J=7.32 Hz, CH $_{2}$ -Ph). Anal. Calcd. for C $_{24}$ H $_{20}$ BrN $_{5}$ O $_{2}$ S $_{2}$ -2H $_{2}$ O: C, 48.82; H, 4.10; N, 11.86. Found: C, 48.90; H, 3.51; N, 11.87.

# 3-Benzoyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl) acetyl)hydrazono]-4-thiazolidinone (**4c**)

Yield: 53%; m.p. 260°C; IR (KBr, cm<sup>-1</sup>): 3197 (N-H), 1757 (ring C=O), 1681 (C=O);  $^1$ H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 11.48 (s, 1H, NH), 8.16 (s, 1H, imidazothiazole C<sub>5</sub>-H), 8.06 (d, 2H, J=8.30 Hz, phenyl), 7.65-7.56 (m, 3H, 4-Brphenyl C<sub>2,6</sub>-H and phenyl), 7.51-7.48 (m, 4H, 4-Brphenyl C<sub>3,5</sub>-H and phenyl), 7.20 (s, 1H, imidazothiazole C<sub>2</sub>-H), 4.28-4.12 (m, 4H, CH<sub>2</sub>CO and SCH<sub>2</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>16</sub>BrN<sub>5</sub>O<sub>3</sub>S<sub>2</sub>: C, 49.83; H, 2.91; N, 12.63. Found: C, 50.46; H, 2.97; N, 13.02.

# 3-(4-Fluorophenyl)-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-4-thiazolidinone (4d)

Yield: 84%; m.p. 279-281°C; IR (KBr, cm-¹): 3122 (N-H), 1751 (ring C=O), 1705 (C=O); ¹H-NMR (500 MHz, DMSO-d<sub>6</sub>):  $\delta$  11.33 (s, 1H, NH), 8.14 (s, 1H, imidazothiazole C $_5$ -H), 7.56 (d, 2H, J=8.30 Hz, 4-Brphenyl C $_{2.6}$ -H), 7.42 (d, 2H, J=8.30 Hz, 4-Brphenyl C $_{3.5}$ -H), 7.19-7.14 (m, 3H, phenyl and imidazothiazole C $_2$ -H), 6.91-6.88 (m, 2H, phenyl), 4.36-3.83 (m, 4H, CH $_2$ CO and SCH $_2$ ). Anal. Calcd. for C $_{22}$ H $_{15}$ BrFN $_5$ O $_2$ S $_2$ : C, 48.54; H, 2.78; N, 12.86. Found: C, 49.04; H, 2.99; N, 12.82.

# 3-(4-Methoxyphenyl)-2-[((6-(4-bromophenyl)imidazo[2,1-b] thiazol-3-yl)acetyl)hydrazono]-4-thiazolidinone (**4e**)

Yield: 98%; m.p. 277-279°C; IR (KBr, cm<sup>-1</sup>): 3209 (N-H), 1732 (ring C=O), 1672 (C=O);  $^{1}$ H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ (NH proton not observed), 8.14 (s, 1H, imidazothiazole C<sub>5</sub>-H), 7.53

(d, 2H, J=6.35 Hz, 4-Brphenyl C<sub>2,6</sub>-H), 7.40 (d, 2H, J=8.79 Hz, 4-Brphenyl C<sub>3,5</sub>-H), 7.15 (s, 1H, imidazothiazole C<sub>2</sub>-H), 6.90 (d, 2H, J=6.83 Hz, phenyl), 6.82 (d, 2H, J=8.79 Hz, phenyl), 4.22-3.93 (m, 4H, CH<sub>2</sub>CO and SCH<sub>2</sub>), 3.80 (s, 3H, OCH<sub>3</sub>). <sup>13</sup>C-NMR (APT) (500 MHz, DMSO-d<sub>6</sub>):  $\delta$  169.23 (thiazolidinone C=O), 166.69 (C=O), 156.99 (phenyl C<sub>4</sub>), 152.44 (C=N), 149.60 (imidazothiazole C<sub>7a</sub>), 145.54 (imidazothiazole C<sub>6</sub>), 141.16 (phenyl C<sub>1</sub>), 134.02 (4-Brphenyl C<sub>1</sub>), 132.31 (4-Brphenyl C<sub>3,5</sub>), 127.14 (4-Brphenyl C<sub>2,6</sub>), 126.69 (imidazothiazole C<sub>3</sub>), 122.55 (phenyl C<sub>2,6</sub>), 120.34 (4-Brphenyl C<sub>4</sub>), 115.32 (phenyl C<sub>3,5</sub>), 111.61 (imidazothiazole C<sub>2</sub>), 109.39 (imidazothiazole C<sub>5</sub>), 55.90 (OCH<sub>3</sub>), 33.24 (CH<sub>2</sub>), 30.75 (thiazolidinone C<sub>5</sub>). Anal. Calcd. for C<sub>23</sub>H<sub>18</sub>BrN<sub>5</sub>O<sub>3</sub>S<sub>2</sub>: C, 49.65; H, 3.26; N, 12.59. Found: C, 49.84; H, 3.11; N, 12.40.

# 3-Benzyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl) acetyl)hydrazono]-5-methyl-4-thiazolidinone (**4f**)

Yield: 72%; m.p. 171-172°C; IR (KBr, cm<sup>-1</sup>): 3186 (N-H), 1720 (ring, C=O), 1668 (C=O);  $^1$ H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 10.68 (s, 1H, NH), 8.26; 8.11 (2s, 1H, imidazothiazole C<sub>5</sub>-H), 7.77 (d, 2H, J=8.29 Hz, 4-Brphenyl C<sub>2.6</sub>-H), 7.58 (d, 2H, J=8.29 Hz, 4-Brphenyl C<sub>3.5</sub>-H), 7.34-7.23 (m, 5H, phenyl), 7.05; 6.87 (2s, 1H, imidazothiazole C<sub>2</sub>-H), 4.87; 4.83 (2s, 2H, NCH<sub>2</sub>), 4.52; 4.47 (2q, 1H, J=7.33; 7.32 Hz, SCH), 3.92; 3.85 (2s, 2H, CH<sub>2</sub>CO), 1.58; 1.54 (2d, 3H, J=7.32 Hz, CH<sub>3</sub>). Anal. Calcd. for C<sub>24</sub>H<sub>20</sub>BrN<sub>5</sub>O<sub>2</sub>S<sub>2</sub>: C, 51.99; H, 3.64; N, 12.63. Found: C, 51.47; H, 3.11; N, 12.17.

# 3-Phenethyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-methyl-4-thiazolidinone (**4g**)

Yield: 89%; m.p. 224-225°C; IR (KBr, cm<sup>-1</sup>): 3169 (N-H), 1712 (ring C=O), 1666 (C=O);  $^{1}$ H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 10.71; 10.54 (2s, 1H, NH), 8.28; 8.20 (2s, 1H, imidazothiazole C<sub>5</sub>-H), 7.78 (d, 2H, J=8.78 Hz, 4-Brphenyl C<sub>2,6</sub>-H), 7.58 (d, 2H, J=8.29 Hz, 4-Brphenyl C<sub>3,5</sub>-H), 7.27-7.23 (m, 2H, phenyl), 7.19-7.16 (m, 3H, phenyl), 7.08; 7.06 (2s, 1H, imidazothiazole C<sub>2</sub>-H), 4.33; 4.27 (2q, 1H, J=6.83; 7.32 Hz, SCH), 4.10; 3.89 (2s, 2H, CH<sub>2</sub>CO), 3.87-3.80 (m, 2H, NCH<sub>2</sub>), 2.99-2.86 (m, 2H, CH<sub>2</sub>-Ph), 1.44; 1.36 (2d, 3H, J=7.32 Hz, CH<sub>3</sub>). Anal. Calcd. for C<sub>25</sub>H<sub>22</sub>BrN<sub>5</sub>O<sub>2</sub>S<sub>2</sub>: C, 52.82; H, 3.90; N, 12.32. Found: C, 52.67; H, 3.75; N, 12.07.

# 3-Benzoyl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl) acetyl)hydrazono]-5-methyl-4-thiazolidinone (**4h**)

Yield: 88%; m.p. 192-194°C; IR (KBr, cm<sup>-1</sup>): 3219 (N-H), 1749 (ring C=O), 1697 (C=O); ¹H-NMR (500 MHz, DMSO-d<sub>6</sub>): δ 11.52 (s, 1H, NH), 8.17; 8.15 (2s, 1H, imidazothiazole  $C_5$ -H), 8.07-8.03 (m, 2H, phenyl), 7.66-7.57 (m, 3H, 4-Brphenyl  $C_{2.6}$ -H and phenyl), 7.53-7.47 (m, 4H, 4-Brphenyl  $C_{3.5}$ -H and phenyl), 7.21; 7.20 (2s, 1H, imidazothiazole  $C_2$ -H), 4.52; 4.44 (2q, 1H, J=7.32 Hz, SCH), 4.23-4.11 (m, 2H, CH $_2$ CO), 1.63; 1.56 (2d, 3H, J=7.32 Hz, CH $_3$ ). Anal. Calcd. for  $C_{24}$ H $_18$ BrN $_5$ O $_3$ S $_2$ : C, 50.71; H, 3.19; N, 12.32. Found: C, 50.72; H, 3.29; N, 12.39.

 $3-(4-Fluorophenyl)-2-[((6-(4-bromophenyl)imidazo[2,1-b] thiazol-3-yl)acetyl)hydrazono]-5-methyl-4-thiazolidinone~(4i) Yield: 90%; m.p. 194-196°C; IR (KBr, cm<math>^{-1}$ ): 3118 (N-H), 1747 (ring C=O), 1701 (C=O);  $^{1}$ H-NMR (500 MHz, DMSO-d $_{8}$ ):  $\delta$  11.36 (s, 1H, NH), 8.22; 8.14 (2s, 1H, imidazothiazole C $_{5}$ -H), 7.59-7.53 (m, 2H, 4-Brphenyl C $_{26}$ -H), 7.45-7.42 (m, 2H, 4-Brphenyl C $_{35}$ -H), 7.31-

7.14 (m, 2H, phenyl), 7.03 (s, 1H, imidazothiazole  $C_2$ -H), 6.92-6.87 (m, 2H, phenyl), 4.54; 4.50 (2q, 1H, J=7.32 Hz, SCH), 4.16-4.01 (m, 2H, CH $_2$ CO), 1.58; 1.53 (2d, 3H, J=7.32 Hz, CH $_3$ ). Anal. Calcd. for  $C_{23}$ H $_{17}$ BrFN $_5$ O $_2$ S $_2$ : C, 49.47; H, 3.07; N, 12.54. Found: C, 49.68; H, 3.07; N, 12.51.

3-(4-Methoxyphenyl)-2-[((6-(4-bromophenyl)imidazo[2,1-b] thiazol-3-yl)acetyl)hydrazono]-5-methyl-4-thiazolidinone (**4j**) Yield: 64%; m.p. 159-161°C; IR (KBr, cm<sup>-1</sup>): 3163 (N-H), 1732 (ring C=O), 1672 (C=O); <sup>1</sup>H-NMR (500 MHz, DMSO-d<sub>2</sub>): δ 11.34; 10.58 (2s, 1H, NH), 8.22; 8.12 (2s, 1H, imidazothiazole C<sub>5</sub>-H), 7.77-7.71 (m, 2H, 4-Brphenyl  $C_{26}$ -H), 7.59-7.53 (m, 2H, 4-Brphenyl  $C_{35}$ -H), 7.42-6.80 (m, 5H, phenyl and imidazothiazole  $C_3$ -H), 4.51; 4.48 (2q, 1H, *J*=7.32 Hz, SCH), 3.83, 3.78 (2s, 2H, CH<sub>2</sub>CO), 3.76 (s, 3H, OCH<sub>2</sub>), 1.62; 1.53 (2d, 3H, *J*=6.84; 7.32 Hz, CH<sub>2</sub>). <sup>13</sup>C-NMR (APT) (500 MHz, DMSO- $d_z$ ):  $\delta$  175.00; 172.58 (thiazolidinone C=O), 166.44 (C=O), 159.84 (phenyl  $C_4$ ), 151.40; 151.09 (C=N), 149.55 (imidazothiazole  $C_{7a}$ ), 145.44 (imidazothiazole  $C_6$ ), 140.98 (phenyl C<sub>1</sub>), 134.20 (4-Brphenyl C<sub>1</sub>), 132.30 (4-Brphenyl C<sub>3.5</sub>), 127.29 (4-Brphenyl  $C_{2.6}$ ), 126.28 (imidazothiazole  $C_3$ ), 122.60 (phenyl  $C_{26}$ ), 120.40 (4-Brphenyl  $C_4$ ), 115.32 (phenyl  $C_{35}$ ), 111.86 (imidazothiazole  $C_2$ ), 109.60 (imidazothiazole  $C_5$ ), 56.09 (OCH<sub>3</sub>), 43.10; 40.49 (thiazolidinone C<sub>5</sub>), 33.77 (CH<sub>2</sub>), 19.90; 19.76 (thiazolidinone 5-CH<sub>3</sub>). Anal. Calcd. for  $C_{24}H_{20}BrN_5O_3S_2$ : C, 49.60; H, 3.66; N, 12.23. Found: C, 49.17; H, 3.40; N, 12.54.

## Biological methods

## Isolation of aldose reductase enzyme

Kidneys obtained from Wistar albino rats were thawed on ice and homogenized with 3 volumes of distilled water. The homogenate were centrifuged at  $10,000 \times g$  for 20 min. Saturated ammonium sulfate was added to the supernatant for 40% saturation. The thick suspension was stirred for 15 min and then centrifuged at  $10,000 \times g$  for 20 min. The inert protein left in the supernatant was removed by increasing the ammonium sulfate concentration to 50% saturation followed by centrifuging the mixture at  $10,000 \times g$  for 20 min. The AR enzyme was precipitated from the 50% saturated solution by adding powdered ammonium sulfate to 75% saturation and was recovered by centrifugation at  $10,000 \times g$  for 20 min. Protein concentration was measured as described by Bradford susing bovine serum albumin as a standard. The protein concentration was  $5.13\pm0.09$  mg/mL.

## Determination of aldose reductase activity

AR activity of the freshly prepared supernatant was assayed spectrophotometrically by determining the decrease in NADPH concentration at 340 nm by a UV-1700 Visible spectrophotometer. DL-glyceraldehyde was used as a substrate. The enzyme was dissolved in 10 mL of 0.05 M NaCl solution. Then 25  $\mu L$  of enzyme was added to the incubation medium, which contained 175  $\mu L$  of phosphate buffer (0.067 M, pH: 6.2), 25  $\mu L$  of NADPH (2×10<sup>-5</sup> M final concentration), and 25  $\mu L$  of inhibitor compound (10<sup>-4</sup> M stock solution). The reaction was started by adding 25  $\mu L$  of DL-glyceraldehyde (5×10<sup>-5</sup> M final concentration) to the incubation medium and the decrease in NADPH concentration was recorded at 340 nm for 10 min at

37°C. Readings were taken at intervals in the periods when the changes in absorbance were linear.<sup>49</sup>

The AR activity was calculated as,

Activity 
$$\left(\frac{u}{mL}\right) = \frac{(\Delta A \text{ Enzyme/min - } \Delta A \text{ Control/min})}{(6.22 \text{ x Volume of enzyme}) \cdot (\text{Total Volume})}$$

where 6.22 is the micromolar extinction coefficient of NADPH at 340 nm,

Specific activity (U/mg protein) = 
$$\frac{\text{Activity (U/mL)}}{\text{Protein Cont. (mg/mL)}}$$

The ARI activity of each sample was calculated using the formula.

% Inhibition= 
$$\left[ 1 - \frac{\Delta A \text{ Sample/min-}\Delta A \text{ Blank/min}}{\Delta A \text{ Control/min-}\Delta A \text{ Blank/min}} \right] \times 100$$

## RESULTS AND DISCUSSION

The target compounds were prepared from 2-[6-(4-bromophenyl)imidazo[2,1-b]thiazole-3-yl] acetohydrazide (2)51 by a two-step synthesis as shown in Scheme 1. By heating ethyl (6-(4-bromophenyl)imidazo[2,1-b] thiazol-3-yl)acetate hydrobromide<sup>52</sup> and hydrazine hydrate ethanol, 2-[6-(4-bromophenyl)imidazo[2,1-b]thiazole-3yl]acetohydrazide was obtained. Hydrazide and cycloalkyl/ aralkyl/aryl isothiocyanates were heated in ethanol to yield 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-cycloalkyl/aralkyl/aryl hydrazinecarbothioamides (3a-f). **3a-f** were then reacted with ethyl  $\alpha$ -bromoacetate/ethyl 2-bromopropionate in the presence of anhydrous sodium

Scheme 1. Synthesis of title compounds 3a-f and 4a-j

acetate in absolute ethanol to yield 3-cycloalkyl/aralkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl) hydrazono]-5-nonsubstituted/methyl-4-thiazolidinones (4a-j).

The IR spectra of **3a-f** displayed bands at about 3296-3118 and 1674-1645 cm<sup>-1</sup> associated with the N-H and C=O functions. Absorption bands at 1236-1163 cm<sup>-1</sup>, which were attributed to the C=S stretching vibrations, were observed in the IR spectra of compounds **3a-f**. The three <sup>1</sup>H-NMR resonances located in the region of 12.55-7.66 ppm were assigned to the NH protons of the hydrazinecarbothioamides and supported the structures of **3a-f**.<sup>53</sup>

New C=O bands (1757-1712 cm<sup>-1</sup>) in the IR spectra of 4-thiazolidinones (4a-j) provided confirmatory evidence for ring closure.54 1H-NMR and 13C-NMR data were also in agreement with the formation of a 4-thiazolidinone ring. NH signals of **4b-d** and **4f-i** appeared at  $\delta$  11.52-10.54 ppm. In the <sup>1</sup>H NMR spectra of compounds 4f-j, CH-CH<sub>2</sub> protons appeared as a double guartet (1H) at  $\delta$  4.54-4.33 and  $\delta$  4.50-4.27 ppm and CH-CH<sub>2</sub> protons appeared as a double doublet (3H) at  $\delta$  1.63-1.44 and  $\delta$  1.56-1.36 ppm, indicating the presence of two isomers in unequal proportions in DMSO-d<sub>s</sub>. This may be explained on the basis of the difference in the relative stability of the Eand Z isomers formed due to the rotational restriction about the exocyclic N=C bond at position 2 of the 4-thiazolidinone ring.<sup>54</sup> In the <sup>13</sup>C-NMR (APT) spectra of **3f**, **4e**, and **4j** chosen as prototypes, all the carbons resonated in the expected regions. 55 For example, the protons resonated at  $\delta$  30.75,  $\delta$ 152.44, and  $\delta$  169.23 ppm in the  $^{13}\text{C-NMR}$  (APT) spectrum of the compound 3-(4-methoxyphenyl)-2-[((6-(4-bromophenyl) imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-4-thiazolidinone (4e) assigned for S-CH<sub>2</sub>, C=N, and C=O moieties, confirming the carbon skeleton of the 4-thiazolidinone ring. Furthermore, <sup>13</sup>C-NMR resonances of the S-CH, C=N, and C=O carbons of the compound bearing 5-methyl substituted 4-thiazolidinone (4j) were observed at  $\delta$  43.10; 40.49,  $\delta$  151.40; 151.09 and  $\delta$  175.00; 172.58 ppm, respectively. The protons of the imidazo[2,1-b] thiazole nucleus and the other protons resonated in the expected regions.55

The in vitro ARI activity of the synthesized compounds is listed in Table 1. The enzyme activity was assayed by spectrophotometrically monitoring the NADPH oxidation that accompanies the reduction of purglyceraldehyde, which is used as substrate. The inhibition study was performed merely by using a 10<sup>-4</sup> M concentration of each drug. Depending upon the results the best ARI effect was found at the rate of 25.41% in compound 3d. Among these inhibitors, in compound 3c, which is the phenethyl substituted compound, 14.03% inhibition was observed, while in compounds 3e and 3f, which are 4-fluorophenyl and 4-methoxyphenyl substituted compounds, 21.31% and 13.73% inhibition were observed, respectively (Table 1). Compound 4g, derived from compound 4b as a result of methylation of the nitrogen atom on the thiazolidinone ring, showed 8.22% inhibition, while compound 4h, obtained from compound 4c by methylation of the nitrogen atom on the thiazolidinone ring, showed 5.93% inhibition (Table 1). Compounds 4i and 4j, obtained by methylation of compounds 4d and 4e, showed 9.31% and 1.42% inhibition, respectively. According to these results, 5-nonsubstituted thiazolidinone derivatives (4a-e) did not show inhibition but 5-methyl

substituted thiazolidinone derivatives (4g-j) showed significant inhibition in the range 1.42-9.31%. A positive influence was exerted by 5-methyl substitution at the thiazolidinone ring on activity. The most efficient compounds were hydrazinecarbothioamide derivatives (3c-f) with 25.41-13.73% (Table 1).

| Table 1. Aldose reductase inhibition by compounds 3a-f and 4a-j* |                                                                 |                 |                     |
|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|---------------------|
| Compounds                                                        | R <sub>1</sub>                                                  | R <sub>2</sub>  | Inhibition ± SD (%) |
| 3a                                                               | C <sub>6</sub> H <sub>11</sub>                                  | -               | 0.00±0.00           |
| 3b                                                               | CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                  | -               | 0.00±0.00           |
| 3c                                                               | CH <sub>2</sub> -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -               | 14.03±1.07          |
| 3d                                                               | CO-C <sub>6</sub> H <sub>5</sub>                                | -               | 25.41±0.12          |
| 3e                                                               | 4-FC <sub>6</sub> H <sub>4</sub>                                | -               | 21.31±1.07          |
| 3f                                                               | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                | -               | 13.73±0.49          |
| 4a                                                               | CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                  | Н               | 0.00±0.00           |
| 4b                                                               | CH <sub>2</sub> -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | Н               | 0.00±0.00           |
| 4c                                                               | CO-C <sub>6</sub> H <sub>5</sub>                                | Н               | n.t.                |
| 4d                                                               | 4-FC <sub>6</sub> H <sub>4</sub>                                | Н               | 0.00±0.00           |
| 4e                                                               | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                | Н               | 0.00±0.00           |
| 4f                                                               | CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                  | CH <sub>3</sub> | 0.00±0.00           |
| 4g                                                               | CH <sub>2</sub> -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | CH <sub>3</sub> | 8.22±1.55           |
| 4h                                                               | CO-C <sub>6</sub> H <sub>5</sub>                                | CH <sub>3</sub> | 5.93±2.05           |
| 4i                                                               | 4-FC <sub>6</sub> H <sub>4</sub>                                | CH <sub>3</sub> | 9.31±1.90           |
| 4j                                                               | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                | CH <sub>3</sub> | 1.42±1.79           |

SD: Standard deviation, n.t.: Not tested, \*Values represent the mean ± SD of three individual experiments

## CONCLUSION

ARIs are one of quite a few types of drugs that have shown prevention of diabetic complications. It is still a challenge to develop a drug candidate molecule. We report the synthesis and ARI activity effects of hydrazinecarbothioamides (3a-f) and 4-thiazolidinones (4a-j) bearing an imidazo[2,1-b] thiazole moiety. On the basis of our preliminary ARI screening results on imidazo[2,1-b]thiazole derivatives, we embarked on the synthesis of more derivatives to discover more active molecules.

## **ACKNOWLEDGEMENTS**

This work was supported by İstanbul University Scientific Research Project (Project Numbers: 40810, 52814 and 52534).

Conflict of Interest: No conflict of interest was declared by the authors.

## REFERENCES

1. World Health Organization (WHO). WHO, Global report on diabetes, 2016.

- Forbes JM, Cooper ME. Mechanism of diabetic complications. Physiol Rev. 2013;93:137-188
- Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-1625.
- El-Kabbani O, Ruiz F, Darmanin C, Chung RP. Aldose reductase structures: implications for mechanism and inhibition. Cell Mol Life Sci. 2004;61:750-762.
- 5. Hers HG. The mécanism of the transformation de glucose in fructose in the seminal vesicles. Biochim Biophys Acta. 1956;22:202-203.
- Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev. 2005;26:380-392.
- Alexiou P, Pegklidou K, Chatzopoulou M, Nicolaou I, Demopoulos VJ. Aldose reductase enzyme and its implication to major health problems of the 21(st) century. Curr Med Chem. 2009;16:734-752.
- 8. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48-58.
- Sheetz MJ, King GL. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA. 2002;288:2579-2588.
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-820.
- Yabe-Nishimura C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev. 1998;50:21-33.
- Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI, Kumagai AK, Frank RN, Stevens MJ. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes. 2003;52:864-871
- Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93:1159-1169.
- Del-Corso A, Balestri F, Di Bugno E, Moschini R, Cappiello M, Sartini S, La-Motta C, Da-Settimo F, Mura U. A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS One. 2013;8:74076.
- Kumar PA, Reddy GB. Focus on molecules: aldose reductase. Exp Eye Res. 2007;85:739-740.
- Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med. 1994;331:1188-1193.
- Suter SL, Nolan JJ, Wallace P, Gumbiner B, Olefsky JM. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care. 1992;15:193-203.
- Imran M, Ilyas B, Deepanjali and Khan SA. Recent thiazolidiones as antidiabetics. Journal of Scientific and Industrial Research. 2007;66:99-109.
- Arakawa K, Ishihara T, Aoto M, Inamasu M, Saito A, Ikezawa K. Actions of novel antidiabetic thiazolidinedione, T-174, in animal models of noninsulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol. 1998;125:429-436.
- Cantello BC, Cawthorne MA, Cottam GP, Duff PT, Haigh D, Hindley RM, Lister CA, Smith SA, Thurlby PL. [[omega-(Heterocyclylamino)alkoxy] benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. J Med Chem. 1994;37:3977-3985.
- Zimmet P. Addressing the insulin resistance syndrone a role for the thiazolidinediones. Trends Cardiovasc Med. 2002;12:354-362.
- 22. Lebovitz HE. Rationale for and role of thiazolidinediones in type 2 diabetes mellitus. Am J Cardiol. 2002;90:34-41.
- 23. Bhosle MR, Mali JR, Pal S, Srivastava AK, Mane RA. Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-

- carboxylic acids having pyrazolyl pharmacophores. Bioorg Med Chem Lett. 2014;24:2651-2654.
- Maccari R, Del Corso AD, Giglio M, Moschini R, Mura U, Ottanà R. In vitro evaluation of 5-arylidene-2-thioxo-4-thiazolidinones active as aldose reductase inhibitors. Bioorg Med Chem Lett. 2011;21:200-203.
- 25. Ottanà R, Maccari R, Giglio M, Del Corso A, Cappiello M, Mura U, Cosconati S, Marinelli L, Novellino E, Sartini S, La Motta C, Da Settimo F. Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. Eur J Med Chem. 2011;46:2797-2806.
- Calderone V, Rapposelli S, Martelli A, Digiacomo M, Testai L, Torri S, Marchetti P, Breschi MC, Balsamo A. NO-glibenclamide derivatives: Prototypes of a new class of nitric oxide-releasing anti-diabetic drugs. Bioorg Med Chem. 2009;17:5426-5432.
- 27. Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer. 2007;7:107-117.
- 28. Jiang N, Wang X, Yang Y, Dai W. Advances in mitotic inhibitors for cancer treatment. Mini Rev Med Chem. 2006;6:885-895.
- Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat. 2007;10:162-181.
- Balzarini J, Orzeszko B, Maurin JK, Orzeszko A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem. 2007;42:993-1003.
- Liesen AP, de Aquino TM, Carvalho CS, Lima VT, Araujo JM, de Lima JG, de Faria AR, de Melo EJ, Alves AJ, Alves EW, Alves AQ, Góes AJ. Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur J Med Chem. 2010;45:3685-3691.
- Omar K, Geronikaki A, Zoumpoulakis P, Camoutsis C, Sokovic M, Ciric A, Glamoclija J. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg Med Chem. 2010;18:426-432.
- Küçükgüzel SG, Oruç EE, Rollas S, Sahin F, Ozbek A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur J Med Chem. 2002;37:197-206.
- 34. Kumar A, Rajput CS, Bhati SK. Synthesis of 3-[4'-(p-chlorophenyl)-thiazol-2'-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg Med Chem. 2007;15:3089-3096.
- 35. Vu CB, Bemis JE, Disch JS, Ng PY, Nunes JJ, Milne JC, Carney DP, Lynch AV, Smith JJ, Lavu S, Lambert PD, Gagne DJ, Jirousek MR, Schenk S, Olefsky JM, Perni RB. Discovery of imidazo[1,2-b]thiazole derivatives as novel SIRT1 activators. J Med Chem. 2009;52:1275-1283.
- 36. Al-Abdullah ES, Al-Tuwaijri HM, Hassan HM, Al-Alshaikh MA, Habib EE, El-Emam AA. Synthesis, antimicrobial and hypoglycemic activities of novel *N*-(1-adamantyl)carbothioamide derivatives. Molecules. 2015;20:8125-8143.
- Daş-Evcimen N, Sarıkaya M, Gürkan-Alp AS, Bozdağ-Dündar O. Aldose Reductase Inhibitory Potential of Several Thiazolyl-thiazolidine-2,4diones. Lett Drug Des Discov. 2013;10:415-419.
- Daş-Evcimen N, Sarıkaya M, Gürkök G, Süzen S. Evaluation of rat kidney aldose reductase inhibitory activity of some N-acetyl dehydroalanine derivatives. Med Chem Res. 2011;20:453-460.
- Bozdağ-Dündar O, Evranos B, Daş-Evcimen N, Sarıkaya M, Ertan R. Synthesis and aldose reductase inhibitory activity of some new chromonyl-2,4-thiazolidinediones. Eur J Med Chem. 2008;43:2412-2417.

- Bozdağ-Dündar O, Verspohl EJ, Daş-Evcimen N, Kaup RM, Bauer K, Sarikaya M, Evranos B, Ertan R. Synthesis and biological activity of some new flavonyl-2,4-thiazolidinediones. Bioorg Med Chem. 2008;16:6747-6751
- Süzen S, Daş-Evcimen N, Varol P, Sarıkaya M. Preliminary evaluation of rat kidney aldose reductase inhibitory activity of 2-phenylindole derivatives: affiliation to antioxidant activity. Med Chem Res. 2007;16:112-118
- Şüküroğlu M, Çalışkan-Ergün B, Daş-Evcimen N, Sarıkaya M, Banoğlu E, Süzen S. Screening and evaluation of rat kidney aldose reductase inhibitory activity of some pyridazine derivatives. Med Chem Res. 2007;15:443-451.
- Bozdağ-Dündar O, Daş-Evcimen N, Ceylan-Ünlüsoy M, Ertan R, Sarıkaya M. Some new thiazolyl thiazolidinedione derivatives as aldose reductase inhibitors. Med Chem Res. 2007;16:39-47.
- 44. Cihan-Üstündağ G, Gürsoy E, Naesens L, Ulusoy Güzeldemirci N, Çapan G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg Med Chem. 2016;24:240-246.
- 45. Ulusoy Güzeldemirci N, Ilhan E, Küçükbasmaci O, Satana D. Synthesis and antimicrobial evaluation of new 3-alkyl/aryl-2-[((alpha,alpha-diphenyl-alpha-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinones. Arch Pharm Res. 2010;33:17-24.
- 46. Çapan G, Ulusoy N, Ergenç N, Kiraz M. New 6-phenylimidazo[2,1-b] thiazole derivatives: Synthesis and antifungal activity. Monatsh Chem. 1999;130:1399-1407.
- 47. Ulusoy N, Ergenç N, Ekinci AC, Özer H. Synthesis and anticonvulsant activity of some new arylidenehydrazides and 4-thiazolidinones. Monatsh Chem. 1996;127:1197-1202.
- 48. Çapan G, Ulusoy N, Ergenç N, Ekinci AC, Vidin A. Synthesis and anticonvulsant activity of new 3-[(2-furyl)carbonyl]amino-4-thiazolidinone and 2-[(2-furyl)carbonyl]hydrazono-4-thiazoline derivatives. Farmaco. 1996;51:729-732.
- Cerelli MJ, Curtis DL, Dun JP, Nelson PH, Peak TM, Waterbury LD. Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. J Med Chem. 1986;29:2347-2351.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.
- Kühmstedt H, Kottke K, Knoke D, Robert JF, Panouse JJ. Synthesis of amides and heterocyclic acylhydrazides with potential immunomodulator properties. Ann Pharm Fr. 1983;40:425-429.
- 52. Robert JF, Xicluna A, Panouse JJ. Advances in heterocyclic chemistry. Eur J Med Chem Chim Ther. 1975;10:59-64.
- Barbuceanu SF, Ilies DC, Saramet G, Uivarosi V, Draghici C, Radulescu V. Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-Triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int J Mol Sci. 2014;15:10908-10925.
- 54. Tatar E, Küçükgüzel ŞG, De Clercq E, Şahin F, Güllüce M. Synthesis, characterization and screening of antimicrobial, antituberculosis, antiviral and anticancer activity of novel 1,3-thiazolidine-4-ones derived from 1-[2-(benzoylamino)-4-(methylthio)butyryl]-4-alkyl/ arylalkyl thiosemicarbazides. ARKIVOC. 2008;14:191-210.
- 55. Gürsoy E, Ulusoy Güzeldemirci N. Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives, Eur J Med Chem. 2007;42:320-326.