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ÖZ

Kardiyopulmoner hastalıklar toplumda sık görülen, tedavi maliyeti oldukça yüksek ve halen kesin bir tedavisi bulunmayan hastalıklardır. Kalsitonin-
geni ile ilişkili peptit (CGRP) ailesinin üyelerinin bir çok kardiyopulmoner hastalıktaki rolleri uzun yıllardır çalışılmakta ve umut vadeden sonuçlar 
elde edilmektedir. Özellikle son yıllarda CGRP ailesine ait peptitlerden adrenomedullin ve intermedin kardiyopulmoner hastalıklarda yeni tedavi 
hedefleri olarak değerlendirilmektedir. Bu derleme ile CGRP ailesi peptitlerinin kardiyopulmoner hastalıklardaki rolleri günümüze kadar yapılan 
çalışmalar doğrultusunda incelenmiştir.

Anahtar kelimeler: CGRP ailesi, kardiyopulmoner hastalıklar, adrenomedullin, adrenomedullin2/intermedin, pulmoner hipertansiyon

Cardiopulmonary diseases are very common among the population. They are high-cost diseases and there are still no definitive treatments. The 
roles of members of the calcitonin-gene related-peptide (CGRP) family in treating cardiopulmonary diseases have been studied for many years and 
promising results obtained. Especially in recent years, two important members of the family, adrenomedullin and adrenomedullin2/intermedin, have 
been considered new treatment targets in cardiopulmonary diseases. In this review, the roles of CGRP family members in cardiopulmonary diseases 
are investigated based on the studies performed to date.
Key words: CGRP family, cardiopulmonary diseases, adrenomedullin, adrenomedullin2/intermedin, pulmonary hypertension

ABSTRACT

INTRODUCTION
The calcitonin gene-related peptide (CGRP) family consists 
of calcitonin, amylin (AMY), CGRP, adrenomedullin (ADM), 
calcitonin receptor (CTR) stimulating peptides 1-3, and the latest 
member of the family, ADM2/intermedin (IMD).1,2 These peptides 
are included in the same family because of their similar chemical 
structures and they have important roles in the homeostasis of 
the body.3-6 The effects of these peptides on the cardiovascular 
and pulmonary systems, especially ADM and ADM2/IMD, 
sparked interest as many studies were presented for the new 
targets of cardiovascular diseases.7-9 In this review, we aim to 
summarize the cardiopulmonary effects of the CGRP family. 

DISTRIBUTION OF MEMBERS OF THE CGRP 
FAMILY 
Peptides of the CGRP family are widely expressed in the body. 
The first peptide of this family, calcitonin, was synthesized by 

a calcium-dependent mechanism and released from thyroid 
C-cells.10,11 Another peptide, AMY, was isolated from amyloid 
plaques in β-cells found in pancreatic islets of Langerhans.12 
The rest of the family, CGRP, ADM, and ADM2/IMD, have more 
effect on the cardiovascular and pulmonary system. CGRP is 
expressed in both central and peripheral nerves associated with 
blood vessels. Perivascular nerves were suggested as important 
sources of plasma CGRP. Although CGRP is mainly expressed 
in nerves, it is also located in endothelial cells, adipocytes, 
keratinocytes, and immune cells.13 

ADM was isolated for the first time from human 
pheochromocytoma cells; however, in following years it has 
been shown to be expressed in many tissues in the body.14 It 
is found in the adrenal medulla, kidneys, lungs, ventricles, and 
especially endothelial cells in high amounts.15,16

The distribution of ADM2/IMD is largely similar to that of ADM. 
The expression of ADM2/IMD was demonstrated in the brain, 
liver, intestines, heart, kidneys, plasma, hypothalamus, and 
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like ADM widely in endothelial cells.17-22 In addition to being 
expressed widely in physiological conditions, their levels 
change under pathological conditions.13,23-26

RECEPTORS OF THE CGRP FAMILY 
The peptides of the CGRP family interact with CTRs or calcitonin 
receptor-like receptors (CLRs). CTRs were first identified in 
pigs in 1991 and two different variants were found in humans, 
named hCTaR and hCTbR. These receptors are located on the 
cell surface. hCTaR is widely distributed in the body, while 
hCTbR was found in the placenta, ovaries, lungs, and bone 
marrow.27 CLRs were first demonstrated in rats in 1993 and 2 
years later were shown in different tissues of humans.28,29 CLRs 
were found in the central nervous system, kidneys and spleen, 
endothelial cells, vascular smooth muscle cells, and the heart. 
CTRs and CLRs are G protein-dependent receptors and contain 
7 transmembrane regions.30,31 The receptors must also interact 
with the related receptor-activating modified protein (RAMP), 
depending on the type of peptide. These proteins facilitate 
the transfer of receptors from the plasma membrane and 
translocations of them into the cells.32,33 RAMPs are composed 
of 148 to 189 amino acids and although they exhibit a homology 
less than 30%, they are structurally similar to each other. These 
proteins are named RAMP1, RAMP2, and RAMP3.13 AMY shows 
high affinity when CTRs are activated by RAMPs.33,34 RAMPs 
that bind to CTRs allow the receptor to show affinity to AMY 
instead of calcitonin. When the CTRs are connected with 
RAMP1, RAMP2, and RAMP3 they are called AMY1, AMY2, and 
AMY3, respectively. CGRP and ADM are activated by binding to 
CLRs. CLRs must interact with RAMP1 in order to function as 
CGRP receptors. CLRs must be bound to RAMP2 and -3 to act 
as ADM receptors (AM1 and AM2, respectively) (Table 1).

RAMP1 is commonly found in the uterus, bladder, brain, 
pancreas, and gastrointestinal tract.35-37 It has been also shown 
in the veins, perivascular nerves, arteries, and endothelial cells 
of arterioles and smooth muscle cells and cardiomyocytes.38 
RAMP2 is found in the lungs, spleen, immune system, and 
kidneys, and widely distributed in the cardiovascular system, 
especially in vascular endothelium and smooth muscle cells.39 
RAMP3 is found in high levels in the kidneys, lungs, and spleen, 
similar to RAMP2.35,36

Other than RAMPs, CLRs need another adapter protein 
to show optimum activity. This protein is called receptor 
component protein (RCP) and provides more effective binding 
with stimulator G protein and thus increases the activity of 
peptides32,40 (Figure 1).

CARDIOPULMONARY EFFECTS OF THE CGRP 
FAMILY
Peptides of the CGRP family show widespread biological activity 
in the body, and in the cardiopulmonary system especially 
CGRP, ADM, and ADM2/IMD have remarkable effects.

Amylin 
AMY acts on the cardiovascular system via CGRP receptors.41 
However, AMY has to reach a high plasma concentration to 
show activity. Intravenous (i.v.) AMY application provided 
potent vasodilatation and decreased arterial blood pressure in 
rats.42 However, human studies showed no significant effect 
after AMY application.43 In studies on rat cardiomyocytes and 
isolated heart, AMY showed a direct inotropic effect that was 
mediated by CGRP receptors. However, because of the side 
effects on the heart of high doses of AMY, it was stated that it 
could not be applied clinically.44,45

Calcitonin gene-related peptide 
CGRP is one of the most potent and effective vasodilators 
and it has a longer duration of action.46,47 Its relaxing effects 
on coronary, cerebral, pulmonary, and renal arteries were 
shown in both in vitro and in vivo experiments. CGRP has 
also regulatory effects on the vascular system; it was shown 
to reduce the vascular resistance and to increase the blood 
supply to organs in both normotensive and hypertensive 
animals.48,49 In hypertensive rats, systemically administrated 
CGRP decreased blood pressure and had positive inotropic and 
chronotropic effects. After ischemic injury CGRP released in 
rats and also CGRP infusion reduced ischemia-reperfusion-
induced arrhythmias. In addition, many studies have shown 
that CGRP is also protective against ischemic damage. These 

Table 1. The receptors and receptor components that interact with 
the CGRP family

Receptor Receptor 
component

Agonist

CGRP CLR/RAMP1 CGRP, ADM2/IMD

AM1 CLR/RAMP2 ADM, ADM2/IMD

AM2 CLR/RAMP3 ADM, CGRP, ADM2/IMD

Calcitonin CTR CT, CRSP

AMY1 CTR/RAMP1 AMY, CGRP

AMY3 CTR/RAMP3 AMY

CGRP: Calcitonin-gene related-peptide, AMY: Amylin, CLR: Calcitonin receptor-
like receptor, RAMP: Related receptor-activating modified protein, CTR: Calcitonin 
receptor, ADM: Adrenomedullin, IMD: intermedin

Figure 1. CLRs are G protein-dependent receptors and contain 7 
transmembrane domains. CLRs require RAMPs and RCP for activation. The 
activated CLRs stimulate the G protein complex and provide activity 
RCP: Receptor component protein, CLRs: Calcitonin receptor-like receptors, 
RAMPs: Related receptor-activating modified proteins, cAMP: Cyclic adenosine 
monophosphate, cGMP: Cyclic guanosine monophosphate
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effects of CGRP are generally thought to be the result of its 
vasodilatory effect.50-52 Furthermore, CGRP also suppressed 
the release of potent vasoconstrictor agents such as endothelin 
and angiotensin.53 

CGRP provided important relaxation in the pulmonary vascular 
system and was found in high amounts in lung tissue.54 In 
pulmonary hypertension (PH), plasma CGRP levels were 
decreased and CGRP infusion has been shown to be effective 
in treatment.13,23-25 Adenovirus-mediated CGRP transfection 
before chronic hypoxia exposure in mice lungs provided 
cyclic adenosine monophosphate (cAMP)-mediated protection 
against pulmonary vascular resistance and decreased vascular 
remodeling.53 CGRP has been shown to provide protection 
against hypoxia-induced remodeling in human tissue studies55 
and it was shown that in rat hypoxic lung the expression levels 
of the CGRP receptor adapter protein RAMP1 were increased.26 

CGRP shows all these effects through CGRP receptor and the 
effects of CGRP on the cardiovascular system are inhibited in 
the presence of selective CGRP antagonist CGRP8-37.

46,56-58 It is 
suggested that both endothelium-dependent and endothelium-
independent mechanisms have roles in CGRP-mediated 
vasodilatation.5,59,60 In many tissues, such as cat cerebral artery, 
rat mesenteric artery, and pig coronary artery, the increase 
in cAMP was measured after CGRP administration and in the 
endothelium-damaged vessels vasodilation was also observed. 
However, even high doses of CGRP did not stimulate the 
cyclic guanosine monophosphate (cGMP) levels directly.59,60 
Therefore, it may indicate that CGRP directly activates 
cAMP-dependent vasodilation.61-63 In the studies that were 
performed in the pig coronary artery and guinea pig ureter, 
CGRP-mediated vasodilation was inhibited by the KATP channel 
inhibitor glibenclamide. Therefore, it was stated that the 
increase in cAMP activates protein kinase A and subsequently 
KATP channels.61,63-67 Basal and nitric oxide (NO)-stimulated 
CGRP release were increased in the human right atrium in 
patients that underwent cardiopulmonary bypass.68,69 However, 
there are also contradictory studies that indicated the role of 
endothelium in CGRP-mediated vasodilation. CGRP provided 
NO- and cGMP-dependent vasodilation in the rat aorta.70 

On the other hand, in the perivascular nerves of the rat 
mesentery artery, CGRP was found more sensitive to 
endothelin-1 mediated constructions and this effect was not 
associated with NO or cyclic nucleotides.71

Adrenomedullin
For many years, the effects of ADM on the cardiovascular system 
have attracted attention. Potent, NO-mediated hypotension 
was observed after the infusion of ADM both in animals and 
in humans.72-74 After acute and chronic administration of ADM 
in rats, total peripheral vascular resistance and blood pressure 
were decreased significantly. The heart rate and cardiac 
output were increased simultaneously. Similar effects were 
also observed in hypertensive rats.75,76 ADM is an important 
vasorelaxant agent, especially in the mesentery, renal, 
pulmonary, and cerebral arteries and aorta, but the mechanism 
of this effect varies according to species and the vascular bed.77-80 

The vasorelaxing effects act through CGRP and ADM receptors. 
In the rat mesenteric artery and dog renal arteries, the relaxing 
effect of ADM was inhibited in the presence of CGRP receptor 
antagonist, whereas in some studies that were performed in 
the cerebral arteries of cat and rat hind limb, inhibition of CGRP 
receptors did not alter the relaxation response.78,81,82 Similarly, 
the role of endothelium and NO in the relaxation effect of ADM 
also varies between different studies. Numerous studies have 
shown that endothelium-mediated vasorelaxation occurred 
in different vessels such as the rat renal, pulmonary, and 
mesenteric arteries and vasorelaxation was inhibited in the 
presence of NO synthase (NOS) inhibitors.72,83,84 However, in 
contrast to these studies, no changes were observed in the 
presence of NOS inhibitor in studies that were performed 
in isolated rat lung, cat hind limb arteries, and the cat penile 
artery.85-87 Studies in human and dog coronary arteries and rat 
cerebral arteries showed inhibited ADM response with high 
potassium.78,88,89 Although there are contradictory results in the 
literature, it has been shown in many studies that ADM provides 
relaxation through the cAMP, NO, or K+ channels in vascular 
systems.90 

According to its potent and long-lasting vasodilatory activity in 
the peripheral microcirculation, ADM also could be effective in 
PH.91 In hypoxia-induced PH, ADM reduced pulmonary arterial 
pressure.92 Systemic i.v. administration of ADM reduced 
pulmonary vascular resistance and increased arterial oxygen 
levels with no effect on systemic blood pressure.93 In the studies 
performed in PH patients, the plasma level of ADM increased 
along with the severity of the disease. In contrast to the increase 
in the endogenous production of ADM, i.v. ADM administration 
reduced pulmonary artery pressure and pulmonary vascular 
resistance in PH patients.94,95 In another study performed with 
a small number of PH patients, acute inhaled ADM was shown 
to improve selectively the hemodynamic parameters in the 
pulmonary system and increase exercise capacity.96 Multicenter, 
randomized, controlled clinical trials should be conducted to 
evaluate the long-term safety and efficacy of ADM, to be able to 
consider it as a future treatment target in PH.9

Adrenomedullin2/intermedin
ADM2/IMD has quite a similar structure and function to CGRP 
and ADM. Therefore, it is also expected that ADM2/IMD can 
be effective in the vascular system. In many studies, blood 
pressure and vascular resistance were decreased and the heart 
rate was increased with the application of ADM2/IMD.17,30,97,98 
After cardiac ischemia/reperfusion injury, the administration 
of ADM2/IMD increased the coronary perfusion and contractile 
strength of the left ventricle and reduced myocardial infarct 
size, hypertrophy, and cardiac fibrosis.99-101 In normotensive and 
hypertensive rats, i.v. infusion of ADM2/IMD increased cardiac 
output by reducing total peripheral vascular resistance.102 
ADM2/IMD has been shown to be a potent vasodilator in 
many vessel beds such as pulmonary, renal, and abdominal 
arteries.103-106

CGRP8-37 and ADM receptor antagonist AM22-52 inhibited the 
effects of ADM2/IMD on the cardiovascular system under both 
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physiological and pathophysiological conditions. The CLR/
RAMP receptors are responsible for the actions of ADM2/
IMD in the cardiovascular system.17,20,103 Although the effects 
of ADM2/IMD on the cardiovascular system frequently act 
through the CGRP receptors, in different vascular beds ADM2/
IMD can interact with the both CGRP and ADM receptors.5,57 
The ADM2/IMD-mediated response acts through CGRP 
receptor in the hypotension of rat systemic pressure and the 
vasodilation of rat coronary, carotid, supramesenteric, and 
pulmonary arteries. However, the ADM2/IMD responses were 
AM1 and AM2 receptor-mediated in pig coronary and rat renal 
arteries.17,20,103,105,107,108 Several studies have shown that the 
cardiovascular effects of ADM2/IMD are endothelium-mediated 
and NO-dependent. In the pulmonary vascular system and aorta, 
the relaxation responses were inhibited by the presence of NOS 
inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride and in 
the damaged endothelium.99,103,109 The NO production increased 
dose-dependently with ADM2/IMD administration in cerebral 
endothelial cells and pulmonary smooth muscle cells.110,111

The positive inotropic effects of ADM2/IMD and the role in cell 
proliferation, apoptosis, and cell migration were related to the 
increase in cAMP production.112-114 The mRNA and protein levels 
of ADM2/IMD increased in the right ventricles, lung tissues, and 
plasma of hypoxia-induced pulmonary hypertensive rats.115-117 
The symptoms of PH were alleviated by ADM2/IMD treatment in 
rats, right ventricular hypertrophy was prevented, and hypoxic 
pulmonary vascular remodeling was inhibited.111 According 
to studies that were performed in pulmonary hypertensive 
rats, ADM2/IMD is thought to be effective in PH.118 In chronic 
hypoxia-induced PH ADM2/IMD provided potent vasodilation in 
the pulmonary arteries of rats and intraarterial administration 
reduced the perfusion pressure of hypoxic lungs. This reduction 
indicates the possible application of ADM2/IMD administration 
in humans with PH.119,120 

CONCLUSION
Peptides of the CGRP family exhibit cardiopulmonary effects 
and have been investigated for many years. Especially CGRP and 
ADM were proposed as new vasodilator agents in the treatment 
of many cardiovascular disease, such as hypertension and PH. 
ADM2/IMD is also a potent vasodilator in the cardiopulmonary 
system and in recent years it has been shown as a new drug 
candidate for cardiometabolic disease. However, further 
investigations should be performed for understanding these 
possible effects of ADM2/IMD before clinical investigations.
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