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INTRODUCTION
The growth and division of cancer cells are usually faster 
than normal cells. Chemotherapy is an effective way to treat 
tumor cells. However, chemotherapeutic drugs are powerful 
and principally cause impairment to healthy cells1 leading to 
subside in their usage. This predicament has created a medical 
urge to flourish effective antitumor agents with heightened 
safety outline.2,3 As clinically proven cancer targets, histone 
deacetylase (HDAC) inhibitors have been established as a 
flourishing tactic for the progress of new anticancer agents.2-4

Acetylation and deacetylation of histone proteins play 
an essential role in transcription and regulation of genes 

in eukaryotic organisms. The enzymes viz., histone 
acetyltransferase and HDACs, play an influential role behind 
this.5,6 The imbalance of any of them may result hindrance in 
differentiation and proliferation of typical cells and conduct 
start of tumor cells. Overexpressed HDAC effectuates the 
eviction of acetyl groups from histones, leading to compression 
of chromatin and downregulation of tumor suppressor genes.7-10 

Cell cycle arrest, chemosensitization, apoptosis induction, 
and overexpression of tumor suppressors are some of the 
primary mechanisms controlled by HDAC inhibitors.11 To date, 
18 members are present in the mammalian HDAC family, which 
are classified into four classes; class I-IV, on the basis of their 
sequence homology with the yeast protein. Class I enclose 
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1, 2, 3, and 8 isoforms promoting cellular proliferation and 
hindering apoptosis. Class II is further classified into class 
IIa with isoforms 4, 5, 7, and 9 and class IIb consist of 6 and 
10. Class I and II forbid the cellular differentiation. Some class 
II isoforms (HDACs 4, 6, 7, and 10) boost cellular migration 
and angiogenesis, which are two crucial means for cancer 
metastasis. Class IV is with a lone member of HDAC 11. Classes 
I, II and IV act by Zn2+ reliant mechanism, while class III shows 
homology with silent information regulator 2, needing NAD+ as 
cofactor for catalysis.10-12

Five HDAC inhibitors have been approved to date for 
the treatment of different types of cancers. Vorinostat 
[suberoylanilide hydroxamic acid (SAHA)] and romidepsin 
(FK228) have been approved for the treatment of cutaneous 
T-cell lymphoma, while belinostat (PXD101) and tucidinostat 
(chidamide) (CS055) have been approved for peripheral T-cell 
lymphoma. Panobinostat (LBH589) finds application in the 
treatment of multiple myeloma. Besides this, several HDAC 
inhibitors  are currently under different phases of clinical 
trials, i.e., rocilinostat (multiple myeloma), entinostat (breast 
cancer), and tacedinaline (lung cancer) are in phase I, II, and 

III, respectively, as represented in Figure 1. HDAC inhibitors are 
also structurally classified as hydroxamic acids, benzamides, 
cyclic tetrapeptides, short chain fatty acids, electrophilic 
ketones, etc.10,13

Remarkably, because these medications are mostly pan-HDAC 
inhibitors or target many HDAC isoforms, they have a lot of 
negative effects. Because of their low toxicity and limited off-
target effects, isoform-selective HDAC inhibitors may provide 
therapeutic benefits. As a result, in recent years, investigations 
on HDAC inhibitors have focused on isoform- or class-specific 
inhibition.14,15

Although all these types bear a resembling core structure 
comprising of three key components, i.e. (i) zinc binding group 
(ZBG) responsible for chelation of zinc ion at active site; (ii) cap 
group (a hydrophobic or aromatic or heteroaromatic moiety) 
accounts for interaction with residues of HDACs external 
pocket, and (iii) a linker (with optimal length) accounts for 
joining the ZBG and cap group. The latter two components, 
i.e. cap group and linker, are being employed for structural 
modification to obtain compounds with selective and optimum 
anticancer activity.13

Figure 1. Chemical structures of some FDA-approved HDAC inhibitors
FDA: Food and Drug Administration, HDAC: Histone deacetylase
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Computer-aided molecular drug design plays an important 
role in design and discovery of novel chemical entities. The 
role of computational study of HDAC enzymes is evolving 
nowadays, with particular emphasis on molecular modeling for 
the development of HDAC inhibitors with enhanced selectivity 
and effectiveness. Generally, 3D quantitative structure-activity 
relationship (QSAR) studies are complemented by docking 
studies.16

Various studies have been reported by many scientists for 
studying and developing HDAC inhibitors using computational 
tools and techniques.16 Kim et al.17 synthesized many δ-lactam-
based HDAC inhibitors containing modified cap groups. 

Hamblett et al.18, employed MS-275 as the lead moiety and 
modified it around pyridine ring for designing novel HDAC 
inhibitors with enhanced class I selectivity. Estiu et al.19 studied 
the structural basis for the selectivity of class II-selective HDAC 
inhibitors SAHA, turacin, and NK308 using molecular dynamics 
simulations approach. Huhtiniemi et al.20 disclosed a relative 
modeling of human SIRT1. Xie et al.21 reported a QSAR study on 
HDACi for the identification of structural features responsible 
for anticancer activity. Chen et al.22 selected around 30 known 
HDAC inhibitors for designing 3D QSAR pharmacophore model 
to recognize critical ligand features for HDAC inhibition activity. 
Ragno et al.23 accomplished 3D QSAR studies for their newly 
designed class II selective HDAC inhibitor (APHAs) against 
maize HD1-A and HD1-B with acceptable selectivity.

The upregulation of the HDAC enzyme has been linked to a variety 
of cancers, making it a possible therapeutic target. The research 
found possible inhibitors of human HDAC enzyme by screening 
several biologically active molecules from several databases.24 
Various bioinformatics tools can be used to screen prospective 
drugs before moving forward with wet-lab research.25 As a 
result, computer-aided drug design has been shown to be 
extremely useful in lowering drug development costs and risks, 
while also increasing speed and accuracy of drug discovery.26 
Molecular docking, binding mode and energy, and hydrogen 
bond interactions aid in the identification of a possible inhibitor 
in the active site of the HDAC target protein from a dataset. 
In other words, the ligand-receptor interaction is predicted by 
molecular docking.27 In addition, QSAR model assesses the 
biological activity of experimental data by comparing it with 
chemical descriptors of known training set substances. The 
application domain and appropriate validation approaches were 
used to determine the reliability and robustness of the developed 
QSAR models.28 Nonetheless, the study discusses the creation 
of an atom-based 3D QSAR model that specifies molecular level 
comprehension and structure–activity relationship regions for 
a dataset of chemicals. The created QSAR model considers 
essential pharmacophoric properties such as average shape, 
hydrophobic/non-polar areas, electrostatic (positive ionic and 
negative ionic), electron withdrawing, and electron donating 
for their respective positive and negative coefficient patterns. 
Different metrics of QSAR models from partial least squares 
(PLS) statistical analysis, such as Q2, R2, standard deviation 
(SD), stability, F, and root mean squared error values, also 
show that the model has strong predictive capacity. As a 

result, the research above aims to provide useful information 
for designing innovative and effective HDAC inhibitors using 
computational and bioinformatic approaches. 

MATERIALS AND METHODS
The present work comprises computer-aided drug design 
studies. Thus, it does not require ethics committee approval 
and patient consent for its accomplishment.

The computational analysis was performed employing the 
Schrodinger suite (Maestro v 9.3, LLC, New York) including 
protein prep wizard, ligprep, grid generation, glide XP dock, and 
3D QSAR model designing.

Biological dataset
The data resources were collected from the research 
papers.29-32 The literature review clearly exhibited that the 
heterocyclic linker in hydroxamic acid-based HDAC inhibitors 
improves activity by facilitating ligand receptor binding. The 
selected compounds have similar skeletons and biological 
assay methods. A data set of 57 compounds was chosen for the 
study along with inhibitory concentration 50 (IC50) values in µM 
against human carcinoma cancer cell lines as shown in Table 1. 
IC50 value was used as a dependent variable in the QSAR study. 
IC50 values of all compounds for different pharmacophore 
studies were changed into negative logarithm of IC50 (pIC50).

33 
These data are critical for constructing good 3D QSAR models 
for investigating structure-activity relationships.

Protein preparation
The protein preparation wizard in Maestro v. 9.3 was practiced to 
organize the receptor in order for docking studies.34 The binding 
region of HDAC inhibitor was initially studied by complexed 
crystal structure of SAHA (proto type HDAC inhibitor) with 
HDAC protein (PDB ID: 1ZZ1).35 This task was carried out in three 
steps, (i) importing the protein from PDB followed by processing 
to fix its structure, (ii) reviewing chemical correctness of 
structure and its modification by adding missing hydrogen 
atoms and neutralizing the remotely situated side chain from 
binding sites, (iii) refining the orientation of optimized H-bound 
groups and geometric minimizing the structure by OPLS_2005 
force field by facilitating the realignment of hydroxyl groups of 
side chains.35,36

Ligand preparation
Lig prep version 2.5 (Schrodinger, LLC, NY) was employed for 
constructing and processing the selected ligands.37 Initially, 
the structures of all these ligands were drawn in ChemDraw 
Professional version 16.0 and saved in mol format. In lig prep, the 
ligands were picked from their mol files and proceeded through 
several steps, like generation of 3D structures from their 2D 
structures, removal of low energy conformers, formation of 
stereoisomers and ionization state of ligands, addition and 
elimination of hydrogen atoms and counter ions, respectively, 
and lastly energy minimization using OPLS_2005 force field. 
The ligands were geometrically optimized through Optimized 
Potentials Liquid Simulations 2005 (OPLS_2005) force field.38 
The partial atomic charges were figured out employing the 
OPLS_2005 force field.39
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Table 1. Chemical structures and pIC50 values of the selected compounds for the dataset

Compound R R’ n HDAC (IC50 µM) pIC50

N

R

N N

HN

O

OH

1 -CH3 - - 0.062 7.208

2 -CH2CH3 - - 0.055 7.260

3 -CH2CH2CH3 - - 0.132 6.879

4 -CH2CH2CH2CH3 - - 0.137 6.863

5
CH3

CH3
- - 0.022 7.658

6
CH3

CH3
CH3 - - 0.018 7.745

7
CH3

CH3
- - 0.838 6.077

8 - - 0.054 7.268

9 - - 0.115 6.939

10 - - 0.09 7.046

11 - - 0.077 7.114

12
S

N
- - 0.171 6.767

13 - - 0.403 6.395

14

O
- - 0.51 6.292

15 - - 0.111 6.955



SHIRBHATE et al. Hydroxamic Acid-Based HDAC Inhibitors274

16 - - 0.094 7.027

N
R

O

R'
N
H

O

OH

17 CH3 - 3.8 5.420

18
F

CH3 - 3.8 5.420

19
Cl

CH3 - 2.4 5.620

20
O2N

CH3 - 3.9 5.409

21
H3C

CH3 - 1.9 5.721

22
O

H3C CH3 - 2.9 5.538

23 N
H3C

CH3

CH3 - 2.4 5.620

24 CH3 - 0.1 7.000

25 CH3 - 1 6.000

26 H - 5 5.301

27 i-propyl - 53 4.276

28 Phenyl - 110 3.959

Table 1. continued

Compound R R’ n HDAC (IC50 µM) pIC50
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Table 1. continued

Compound R R’ n HDAC (IC50 µM) pIC50

N
H

R

O

H
N

OH
O

29 N
H3C

CH3

-
- 0.172 6.764

30 N - - 0.205 6.688

31
N

- - 0.37 6.432

32 N - - 0.941 6.026

33 N
N

N
- - 0.569 6.245

N
H

O
OH

H
N

R n

34
CH2

HN

O

- 1 0.03 7.523

35
CH2N

- 1 0.066 7.180

36
CH2

N
H3C

- 1 0.023 7.638
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37 CH2

O
- 1 0.016 7.796

38

CH2

N - 1 0.084 7.076

39
CH2

HN

F

- 1 0.014 7.854

40 CH2

HN
- 1 0.063 7.201

41

HN CH3

- 1 0.024 7.620

42 CH2

HN
- 1 0.037 7.432

43
N

CH2
- 1 0.067 7.174

44
CH2

O

O
- 1 0.03 7.523

45
CH2

H
N

- 1 0.046 7.337

46

CH2

HN

O
CH3

- 1 0.014 7.854

Table 1. continued

Compound R R’ n HDAC (IC50 µM) pIC50
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Table 1. continued

Compound R R’ n HDAC (IC50 µM) pIC50

47

HN OH

- 1 0.04 7.398

48
CH2

- 1 0.15 6.824

49

OHHN
- 1 0.027 7.569

50

HN

CH2
- 0 0.262 6.582

51 CH2

H
N

- 1 0.051 7.292

52

HN

CH2 - 1 0.053 7.276

53

CH2
N - 1 0.079 7.102

54
CH2

O - 1 0.069 7.161

55 CH2
NH

O
H3C

- 1 0.111 6.955

56

HN
CH2

- 1 0.059 7.229

57
N

N

H3C
CH2

- 1 0.038 7.420

HDAC: Histone deacetylase, pIC50: Negative logarithmic concentration of 50% inhibition
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Docking studies
Glide version 5.8 (Schrodinger, LLC, NY) molecular docking 
tool was used for docking studies.40 An effective interaction of 
hydroxamate derivatives with the target protein (PDB ID: 1ZZ1) 
to estimate the potential response against tumor cells can be 
predicted by this study. 1ZZ1, the target protein, was acquired 
from the protein data bank (PDP)39 and was prepared for the 
docking task by working on “protein preparation wizard” in 
Maestro version 9.3. The selected ligands were prepared by lig 
prep in Maestro version 9.3. Low energy conformers of ligands 
were screened. The grid was generated on the receptor protein 
by following receptor generation module in glide and finally the 
screened ligands were docked into the receptor grid containing 
protein exercising XP and SP docking approaches.41-44

Energetic (e)-pharmacophore hypothesis generation
Both ligand and structure based techniques are combined in 
energetic (e)-pharmacophore approach. The e-pharmacophore 
script feature permitting docking post processing option 
in Maestro v. 9.3 was accomplished for e-pharmacophore 
hypothesis study.5,33,45 The module uses energetic tenets of the 
XP glide scoring function for mapping and creating energy-
adjusted pharmacophores, i.e., e-pharmacophores. Thereafter, 
phase version 3.4 (Schrodinger, LLC, NY) application generates 
pharmacophore sites using a default set of six chemical 
attributes: hydrogen bond acceptor (A), hydrogen bond donor 
(D), hydrophobic group (H), positive ionizable (P), negative 
ionizable (N), and aromatic ring (R). The glide XP energies of 
each atom were summed to constitute each pharmacophore 
site. These sites were then ordered as per their energy and the 
most affirmative site was picked for pharmacophore generation.

Pharmacophore hypothesis generation
Phase version 3.4 (Schrodinger, LLC, NY) was engaged for 
the pharmacophore model (hypotheses) generation.46 It is 
a commonly used system-based method for recognizing 
common pharmacophores and developing 3D QSAR models. 
Pharmacophore modeling is a ligand-based method for 
identifying new lead moieties.

The process gets initiated with cleaning of all 57 selected 
ligands. The conformers of these ligands were created by a 
macromodel search approach in which maximum number of 
conformers was 1000 per structure and minimization steps 
as 100 was set as default. Conformers were minimized using 
OPLS_2005.47 Later, sites were created for all the ligands 
depending on the values set for activity threshold, which 
progressively generated common pharmacophore hypothesis 
(CPHs). The CPHs are based upon the activity threshold of 
active and inactive molecules. A maximum of six feature 
sites was present in each hypotheses, namely, hydrogen bond 
donor (D), hydrogen bond acceptor (A), hydrophobic group (H), 
positively charged group (P), negatively charged group (N), and 
aromatic ring (R). These generated hypotheses were monitored 
on the basis of survival, survival-inactive, and post-hoc scores. 
The hypotheses possessing lowest relative conformational 
energy and highest adjusted survival score were selected for 
building the QSAR model.48

3D QSAR model development
The dataset was efficiently segregated into training (38) and 
test (19) sets for analysis using a random and rational division 
method. In the phase module, pharmacophore and atom-based 
alignments are available to orient 3D structures of compounds. 
In this study, an atom-based QSAR model was used, which 
explained the better structure-activity relationship. Initially, 
the overall dataset was segregated into a modeling set (80% 
compounds) and an external evaluation set (20% compounds) 
employing random division approach. The modeling set was 
further sectioned into a training set (comprising of 80% of the 
modeling set) and a test set (comprising of 20% of the modeling 
set) again using the rational division method. The best fitting 
model was generated through a random division. The atom-
based QSAR model was generated for ligands by selecting the 
best fit hypothesis with good scoring value, keeping 1Å as grid 
spacing and maximum PLS factor as 5. The QSAR results were 
later visualized, which ultimately helped in the optimization of 
the thrust structure of dataset.49-51

Validation of the pharmacophore model
The primary goal of QSAR model is to estimate biological 
activity of novel molecules. Internally and externally, the model 
developed would sound. A training set and a test set were 
created from the data. With 38 compounds in the training set, 
atom-based 3D-QSAR models were created for hypotheses. By 
estimating the activities of 19 test molecules, top QSAR model 
was externally validated.

Statistical analysis
Statistical criteria such as squared correlation coefficient (R2), 
q2 (R2 for test set), SD of regression, Pearson’s correlation 
coefficient (pearson’s r), statistical significance (P), and 
variance ratio were used to internally validate the developed 
pharmacophore hypotheses (F). The anticipated pIC50 was 
calculated using the 5th PLS factor. An increase in the number of 
PLS factors has no effect on the model’s statistics or prediction 
ability.

RESULTS AND DISCUSSION
Molecular docking study
The result of docking studies shown in Figure 2 indicated 
the probable interaction of ligands containing hydroxamate 
groups with the receptor 1ZZ1. Compound 39 from the dataset 
exhibits maximum structural alignment with that of SAHA in 
protein 1ZZ1. 2D interaction diagram of compound 39 docked 
with 1ZZ1 revealed metallic bond interaction with zinc (Zn2451) 
of receptor 1ZZ1 and keto group of ligand, hydrogen bond 
formation between NH- moiety of hydroxamic acid group of 
the ligand with GLY151 and TYR312 amino acids, and hydrogen 
bond formation between NH- moiety of hydroxamic acid group 
of the ligand with GLY151 and TYR312 amino acids. Hydrogen 
bonding is also obvious between the NH- moiety of indole ring 
and the ASP98 amino acid. The hydrophobic interaction of 
PHE208 with five-membered ring B of indole and benzene ring 
of compound 39 was also found in the diagram.
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Energetic (e)-pharmacophore study
An energetic (e)-pharmacophore study displayed its result 
for compound 45 with protein 1ZZ1. A maximum of seven 
pharmacophore attributes were taken as default, but five 
pharmacophore sites were recorded. The created hypothesis 
presented one hydrogen bond acceptor, two hydrogen bond 
donors, and two aromatic rings, as presented in Figure 3b. 
Its ranking order and scoring value as represented in Table 2 
clearly indicate that the two aromatic rings R10 and R11 create 
a hydrophobic environment and acceptor A2 and donor D4 and 
D6 groups participate in hydrogen bonding.

Pharmacophore generation and 3D QSAR model analysis and 
validation
Phase version 3.4 presented the outcome for pharmacophore 
generation and atom-based 3D QSAR modelling. The activity 

threshold was maintained at a range of 7.6 to 6.9, which divided 
the dataset into active, moderately active and inactive range. 
The dataset was further partitioned into training (38 molecules) 
and test (19 molecules) sets based on structural features and 
the range of biological activity. The five features containing 
CPHs were selected based on their high survival score to 
define the entire binding arena of the molecule as displayed in 
Figure 3a. The suitable 10 CPHs (Table 3) representing good 
scores (survival-inactive) were considered for 3D QSAR model 
design using 5 PLS factors.

Figure 2. Docking pose of compound 39 complexing with 1ZZ1 protein 
(A) docking pose alignment showing crystal ligand SAHA (magenta) and 
docked ligand (white) (B) 2D interaction pattern of ligand with protein
SAHA: Suberoylanilide hydroxamic acid

Figure 3. Pharmacophore hypothesis. Pharmacophore features elucidating 
hydrogen bond acceptor (A, pink), hydrogen bond donor (D, blue), and 
aromatic rings (R, brown) (A). Pharmacophore model AADRR.139 developed 
using the phase module (ligand-based approach). (B) Pharmacophore 
model ADDRR was developed using the e-pharmacophore script (ligand 
and structure based approaches)

Table 3. Hypothesis score generated by phase

Serial no. Hypothesis Survival Survival-inactive Post-hoc Site Vector Volume Matches

1 AADRR.139 3.44 1.546 3.44 0.79 0.946 0.704 7

2 ADDRR.202 3.307 1.471 3.307 0.76 0.917 0.628 7

3 AADDR.209 3.435 1.601 3.435 0.76 0.934 0.743 7

4 AAAAR.175 3.521 1.67 3.521 0.83 0.921 0.786 7

5 AAADR.210 3.402 1.559 3.402 0.80 0.919 0.678 7

6 AADHR.205 3.450 1.566 3.450 0.78 0.944 0.721 7

7 AAADH.201 3.451 1.585 3.451 0.81 0.941 0.699 7

8 AADDH.192 3.41 1.644 3.41 0.78 0.935 0.695 7

9 AAARR.81 3.307 1.471 3.307 0.76 0.917 0.628 7

10 ADDRR.207 3.518 1.694 3.518 0.82 0.934 0.762 7

Table 2. Score of pharmacophoric features based on energetic 
terms of XP docking

Feature label Score (kcal/mol) Score source

R12 -1.86 Ring chemscoreHPhobe

A3 -0.65 H-bond

D4 -0.51 H-bond

D5 -0.43 H-bond

R11 -0.65 Ring chemscoreHPhobe

XP: Extra precision
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CPH AADRR.139 executed best statistical conclusion for PLS 
factor 5, revealing Q2 (0.7142), R2 (0.9877), SD (0.1049), F (531.1), 
P (1.627e-030), root mean square deviation (RMSD) (0.4435), 
stability (0.4939), and pearson-r (0.8478) (Table 4). The scatter 
plots of actual vs predicted activity for training and test set 
compounds were plotted (Figure 4). The results showing 
comparison of predicted activity with their actual experimental 
activity was studied and is mentioned in Table 5.

The statistics and predictive ability (q2) of the model did not 
improve with an increase in the digit of PLS factors. The 
regression is carried out by creating a series of models with 
progressively more PLS components. When the number of 
PLS factors is increased, the model’s accuracy improves until 
overfitting occurs. Although there is no limit to the number of 
PLS factors that can be added, in general, adding factors should 
be halted when the SD of the regression is roughly equivalent 
to the experimental error. This problem began to appear 
on models generated after PLS 5. At 5th PLS factor with the 
smallest SD of regression, statistical measures like R2 and q2 
were also high (0.9877 and 0.7142, respectively). As a result, 
for the construction of our atom-based three-dimensional 
quantitative structure-activity relationship model, 5th SD of 
regression component was chosen.

3D QSAR model visualization
There are some essential features in the form of different 
colored cubes for each feature observed in QSAR visualization 
maps highlighting an active ligand-receptor interaction. These 

features indicate the type and position of the attachment 
of functional groups for showing specific pharmacological 
activity. They also throw light on toxicity statement of ligands. 
The ligand 40 from the dataset, more specific from the 
training set, was carefully chosen as the template molecule for 
improved understanding of the study. The QSAR model made 
between hypothesis AADRR.139 and compound 40 is visualized 
in Figure 5.

The substitution of hydrogen atom of NH- and its adjacent -CH2 
group by a hydrogen bond donating moiety increases the activity; 
similarly, replacement of hydrogen atom of OH of hydroxamic 
acid also displays an elevation in activity. Replacement of 
oxygen of hydroxamic acid by any H-bond donor leads to 
decrease in activity. The attachment of the hydrophobic group 
rather than H present at 4th position of the indoline ring leads to 
rise in activity. In addition, the substitution of hydrogen atoms 
of the ethylene moiety present in the linker also escalates the 
activity. Attachment of the hydrophobic group and an electron 
withdrawing group in the phenyl ring of linker causes a decline 
in activity. Substitution of the hydrogen of indoline nitrogen 
with electron withdrawing moiety increases the activity.

The outcome of these computational studies clearly indicate 
that among all compounds, higher fitness value and docking 
score, lesser toxicity, and superior drug properties and more 
complimentary conformation as compared to the original ligand 
has been shown by compound 39. Thus, ligand 39 can be 
considered as a possible lead moiety for the development of 
newer HDAC inhibitors.

Table 4. Statistical result of the developed 3D QSAR model using AADRR.139 CPHs

ID PLS fact. SD R2 F P Stability RMSE Q2 Pearson-r

AADRR.139

1 0.4577 0.7381 104.3 2.578e-012 0.8691 0.3095 0.8609 0.9294

2 0.2661 0.9139 191.1 6.764e-020 0.6313 0.3984 0.7694 0.8779

3 0.1807 0.9614 290.5 8776e-025 0.5401 0.4271 0.7349 0.8601

4 0.1372 0.9784 384.4 8.771e-028 0.5275 0.4596 0.6931 0.8337

5 0.1049 0.9877 531.1 1.627e-030 0.4939 0.4435 0.7142 0.8478

QSAR: Quantitative structure activity relationship, CPH: Common pharmacophore hypothesis, PLS fact: Partial least squares factor, SD: Standard deviation, R2: 
Multiple correlation coefficient between dependent and independent variable, F: Aromatic substituents electronic inductive effect, P: Partition coefficient, RMSE: 
Root mean squared error, Q2: Predictive squared correlation coefficient, Pearson-r: Pearson correlation matrix

Figure 4. Test (A) and training (B) plots showing the observed activity versus the predicted activity for 3D QSAR models generated using AADRR.139
QSAR: Quantitative structure-activity relationship
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Table 5. Comparison between experimental and predicted activity along with fitness values of dataset ligands, which are obtained 
from the best generated atom based 3D-QSAR models AADRR.139

Lig. name QSAR set Experimental activity
Predicted activity Residual Fitness

Pharma set
3D QSAR AADRR.139

1 Training 7.208 7.04 0.168 1.94 +

2 Training 7.26 7.32 -0.06 1.87 +

3 Training 6.879 6.81 0.069 1.85 Inactive

4 Training 6.863 6.89 -0.027 2.24 Inactive

5 Training 7.658 7.50 0.158 1.98 Active

6 Training 7.745 7.86 -0.115 1.91 Active

7 Training 6.077 6.42 -0.343 1.8 Inactive

8 Training 7.268 7.18 0.088 1.85 +

9 Training 6.939 7.01 -0.071 1.91 +

10 Training 7.046 7.19 -0.144 2.39 +

11 Training 7.114 7.03 0.084 1.91 +

12 Test 6.767 7.05 -0.283 2.29 Inactive

13 Training 6.395 6.43 -0.035 1.87 Inactive

14 Training 6.292 6.31 -0.018 1.8 Inactive

15 Test 6.955 6.77 0.185 1.81 +

16 Training 7.027 7.11 -0.083 2.17 +

17 Test 5.42 5.26 0.16 1.38 Inactive

18 Test 5.42 5.33 0.09 1.39 Inactive

19 Training 5.62 5.88 -0.26 1.67 Inactive

20 Test 5.409 5.84 -0.431 1.66 Inactive

21 Training 5.721 5.43 .0291 1.38 Inactive

22 Training 5.538 5.51 0.028 1.38 Inactive

23 Test 5.62 5.52 0.10 1.37 Inactive

24 Training 7 7.16 -0.16 1.43 +

25 Training 6 6.03 -0.03 1.47 Inactive

26 Test 5.301 5.79 -0.489 1.13 Inactive

27 Training 4.276 4.37 -0.094 1.37 Inactive

28 Training 3.959 4.00 -0.041 1.32 Inactive

29 Training 6.764 6.57 0.194 1.62 Inactive

30 Test 6.688 6.47 0.218 1.78 Inactive

31 Test 6.432 6.27 0.162 1.67 Inactive

32 Training 6.026 6.05 -0.024 1.76 Inactive

33 Training 6.245 6.14 0.105 1.68 Inactive

34 Training 7.523 7.43 0.093 2.3 +

35 Training 7.18 7.20 -0.02 2.83 +

36 Training 7.638 7.44 0.198 2.93 Active

37 Training 7.796 7.80 -0.004 2.73 Active
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CONCLUSION
HDAC inhibitors, a newer addition to chemotherapy, have 
been found to play a crucial role in the treatment of cancer. 
HDAC inhibitors are scarcely available on the market. The 
computational study performed on hydroxamic acid-based 
derivatives of the dataset exhibited a convincing outcome.

The various computational studies such as pharmacophore 
and atom-based 3D-QSAR, molecular docking (XP and SP), 

and energetic-based pharmacophore mapping effectively 
established a correlation between the structure of ligands with 
their predicted biological activity. Both ligand- and structure-
based pharmacophore mapping approaches in combination 
efficiently forecasted this correlation and would be helpful in the 
design and development of novel HDAC inhibitors as anticancer 
agents. Moreover, they may also help in designing novel ligands 
more accurately. The molecular docking study showed maximum 

38 Training 7.076 7.23 -0.154 2.84 +

39 Test 7.854 7.47 0.384 3.00 Active

40 Training 7.201 7.44 -0.239 2.94 +

41 Training 7.62 7.56 0.06 2.43 Active

42 Test 7.432 7.23 0.202 1.75 +

43 Test 7.174 7.11 0.064 2.4 +

44 Training 7.523 7.58 -0.057 2.31 +

45 Test 7.337 7.26 0.077 2.27 +

46 Test 7.854 7.48 0.374 2.78 Active

47 Training 7.398 7.48 -0.082 2.64 +

48 Test 6.824 7.19 -0.366 2.13 Inactive

49 Training 7.569 7.54 0.029 2.13 +

50 Training 6.582 6.53 0.052 1.97 Inactive

51 Training 7.292 7.27 0.022 1.72 +

52 Training 7.276 7.12 0.156 2.19 +

53 Test 7.102 6.90 0.202 2.04 +

54 Training 7.161 7.07 0.091 2.41 +

55 Test 6.955 7.16 -0.205 2.41 +

56 Test 7.229 7.15 0.079 2.33 +

57 Test 7.42 7.50 -0.08 2.87 +

+ represents moderately active compounds, QSAR: Quantitative structure-activity relationship

Table 5. continued

Lig. name QSAR set Experimental activity
Predicted activity Residual Fitness

Pharma set
3D QSAR AADRR.139

Figure 5. Visualization of QSAR models generated using hypotheses AADRR.139 for various substituent groups (A) H-bond donor (B) hydrophobic/non-polar 
(C) electron withdrawing. Blue cubes indicate favorable regions, whereas yellow cubes indicate unfavorable regions for the activity
QSAR: Quantitative structure-activity relationship
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structural similarity of compound 39 with that of reference 
HDAC inhibitor (SAHA). It revealed the crucial intermolecular 
interactions between the ligand moieties and amino acids in 
the target protein. The created 3D QSAR pharmacophore model 
exhibited exceptional regression coefficient standards for the 
training set, with Q2: 0.7142, R2: 0.9877, and low RMSD: 0.4435. 
It is expected that the findings of these investigations will be 
used to develop new structural analogs of substituted phenyl 
hydroxamide derivatives with anticancer activity.
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